

# Recent results

Ze Ouyang

May 6<sup>th</sup>, 2025

## Reconstruction on Shot 228 by Gradient Descent method



## PCA on Shot 228 by Gradient Descent method



wavelength [nm]

#### All-optical diagnostics on 3D structure of electron beams

A good reconstruction requires knowledge on

- Longitudinal profile (from CTR spectrum)
- Lorentz factor of electron (from Inverse Compton Scattering)
- **Total charge** (well, this is a brain teaser...)

1.0 Charge distribution along x

1.0 0.8 0.4 0.2 0.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 x [µm]





$$Ne = 36 pC$$

Total charge can be deduced by

- 1. Transverse distribution & Boundary charge
- 2. Time leads to convergence
- 3. NSS value



Ne = 
$$36*1.5 = 54 pC$$



#### Conclusion

- 1. Phase difference, current only a function of  $\theta$  and  $\omega$ , but should have  $\varphi, \psi$ , even  $\rho$ ?  $\phi = \frac{2\pi L}{\lambda \beta} (1 \beta \cos \theta)$
- 2. With divergence,  $\rho$  would also evolve...  $E_{tot} = E_1 + E_2 = E_1 + E_1 e^{i\phi}$
- 3. For electron bunches, the total **E** field should be a convolution of 3D position and 2D transverse divergence. (next-2-week goal: 5D reconstruction)
- 4. Total charge, energy spread, and gamma also determine COTR and COTRI. (All-optical diagnostics for plasma-wakefield-accelerated electron bunches)



#### Conclusion

- 1. GD method
- 2. GD solutions cluster analysis
- 3. Proposal for all-optical diagnostics for 3D structure
- **4. Generative Neural Network** code is under active developing