

Preliminary reconstructions of the 3D structure of electron bunches based on COTR using two methods

Ze Ouyang

Jan 16th, 2025

Content

- Overview of the inverse COTR problem
- Gradient-descent & Generative-neural-network reconstruction
- Several comparison
- Robustness of these two method
- Conclusion & Discussion

Overview

• Electron bunch $\rho(x_s, y_s, z_s)$ to COTR $C(i, j, \lambda_0)$

 $C(i,j,\lambda_0) = \hat{\mathcal{R}}(\rho(x_s, y_s, z_s))$

ARTICLE

Open Access

Electro-optic 3D snapshot of a laser wakefield accelerated kilo-ampere electron bunch

Kai Huang ^{®1,2™}, Zhan Jin ^{®2,3}, Nobuhiko Nakanii ^{®1,2}, Tomonao Hosokai^{2,3} and Masaki Kando ^{®1,2}

Description of $\rho(x_s, y_s, z_s)$

- 3D space: $L_x \times L_y \times L_z$ (10µm × 10µm × 1µm)
- Grids uniformly distributed in this space $(30 \times 30 \times 30 = 27k)$
- Each grid has certain number of electrons, 5.4e9 in total (865pC)

Task: Find a parameter set (grid charge)

that minimizes the lost function

GD-based reconstruction from uniform $\rho(x_s, y_s, z_s)$

GD-based reconstruction from Gaussian $\rho(x_s, y_s, z_s)$

Uniqueness discussion on GD

We start with quasi-uniformly distributed electron bunches!

Uniqueness discussion on GD

Universal function approximator

- Rather than directly tune the grid charge in the GD method, here we tune the parameters of NN.
- Parameters of NN: Weights, Biases,
 # of layers, # of neurons per layer,
 activation function, et al.
- For the case here, we have
 ~200k parameters of the NN.

PHYSICAL REVIEW LETTERS 130, 145001 (2023)

Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations

R. Roussel[®],^{*} A. Edelen, C. Mayes[®], and D. Ratner[®] SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 094601 (2024)

Editors' Suggestion

Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning

Ryan Roussel[©], ¹ Juan Pablo Gonzalez-Aguilera[®], ² Eric Wisniewski, ³ Alexander Ody[®], ³ Wanming Liu[®], ³ John Power[®], ³ Young-Kee Kim[®], ² and Auralee Edelen[®] ¹ ¹SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ²Department of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA ³Argonne National Laboratory, Lemont, Illinois 60439, USA

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 074601 (2024)

Four-dimensional phase-space reconstruction of flat and magnetized beams using neural networks and differentiable simulations

Seongyeol Kim¹,^{*} Juan Pablo Gonzalez-Aguilera^{2,†} Philippe Piot³,^{1,3} Gongxiaohui Chen,¹ Scott Doran,¹ Young-Kee Kim,² Wanming Liu,¹ Charles Whiteford,¹ Eric Wisniewski,¹ Auralee Edelen,⁴ Ryan Roussel⁹,⁴ and John Power¹ This recent paper from our friends at AAC appears relevant to our discussion on Tuesday. MD

From: ResearchGate <<u>no-reply@researchgatemail.net</u>> Date: Saturday, September 14, 2024 at 3:22 AM To: Downer, Michael <<u>downer@physics.utexas.edu</u>> Subject: M.C., a recent article cited your research

M.C., we found a recent citation of your research:

Efficient six-dimensional phase space reconstructions from experimental measurements using generative machine learning

Citing article

Sep 2024

Uniqueness discussion on GNN from seed (71)

Uniqueness discussion on GNN from seed (51)

Robustness of GD & GNN, shot 228

Robustness of GD & GNN, shot 237

Robustness of GD & GNN, shot 526

Conclusion

- 1. In both methods, same seed leads to same reconstructed electron bunches; but different seeds lead to different reconstructed electron bunches.
- 2. Our methods show robustness on multiple shots.
- 3. Two-wavelength-figures don't match well in all situations.

Discussion

- 1. Why loss stuck at a certain level? Model, initial condition, fine-tuned parameters
- 2. Other ways to describe electron bunches
- 3. Other use of NN: reduction of parameters, Physics-informed NN,
- 4. dataset generation
- 5. Initial parameters of electron bunches
- 6. Physically-reasonable converged electron bunches
- 7. Combination with prior knowledge of electron bunches, i.e. z- distribution