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1. How it enables/speeds up ML frameworks

2. How it is related to differentiable programming

3. How both can be used for “simulation-based inference” 
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• Numerical differentiation:  𝑓′ 𝑥 ≈
𝑓 𝑥 + 𝛿𝑥 − 𝑓(𝑥)

𝛿𝑥

• Symbolic differentiation:

• Auto differentiation:

Pros: simple
Cons: round-off & truncation errors, accuracy, inefficient for high-dimension

Pros: exact
Cons: computationally expensive, expression 
explosion

Pros: exact
Cons: computation graph adding overhead

Overview of differentiation

Analytically derive 𝑓′ 𝑥 , like Mathematica

Symbolic + Chain rule



3

Auto Differentiation

Forward Mode: works better for 𝑛 < 𝑚 

Backward Mode : works better for 𝑛 > 𝑚 

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

ℝ𝑛 ⇒ ℝ𝑚

Input: 𝑥1, 𝑥2,…, 𝑥𝑛 
Output: 𝑦1, 𝑦2,…, 𝑦𝑚 

Preliminary Concepts on Auto Differentiation
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AD: Forward Mode

𝑦 = 𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 + sin(𝑥2)

Computation graph

1. Divide into simple structures

2. Create computation graph (contains primal 

& derivatives respect to its last nodes)

3. Follow the direction and calculate gradient 

of a certain input variable

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

𝜕𝑣2

𝜕𝑣−1
, 
𝜕𝑣2

𝜕𝑣0

𝑣4, 
𝜕𝑣4

𝜕𝑣2
, 
𝜕𝑣4

𝜕𝑣1
, should have 

𝜕𝑣4

𝜕𝑣−1

𝜕𝑣4

𝜕𝑣−1
=

𝜕𝑣4

𝜕𝑣1

𝜕𝑣1

𝜕𝑣−1
Chain rule
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AD: Backward Mode

𝑦 = 𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 + sin(𝑥2) 1. Divide into simple structures

2. Create computation graph (contains primal & 

derivatives respect to its last nodes)

3. Calculate from backward of a certain output
𝜕𝑣2

𝜕𝑣−1
, 
𝜕𝑣2

𝜕𝑣0

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

Suitable for machine learning!

𝑣5, 
𝜕𝑣5

𝜕𝑣4
, 
𝜕𝑣5

𝜕𝑣3
, should have 

𝜕𝑣5

𝜕𝑣1

𝜕𝑣5

𝜕𝑣1
=

𝜕𝑣5

𝜕𝑣4

𝜕𝑣4

𝜕𝑣1
Then go back to last 𝑣−1 node

Chain rule
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Differentiable Programming (DP)

𝑦 = 𝑓(𝑥; 𝜃)

Make sure 𝑓(𝑥; 𝜃) is differentiable. 

round(), floor(), ceil(), max(), min()… are not differentiable

for loop, if else,…are differentiable

DP enables complex programs to be differentiable by designing, 

utilizing AD to make gradient-based optimization.

• Auto differentiation
• Continuous optimization
• Dynamic computation graph



7

Simulation-based Inference

• Statistical Inference • Simulation-based Inference

Given parameters 𝜃, the observed data 
𝑥 is not deterministic, but we know 
probability

Given parameters 𝜃, the observed data 𝑥 is 
deterministic, but hard to analytically relate

Likelihood function

Statistical analysis, find 𝜃 with 
confidence level

Likelihood function is implicit

Loss function

Find suitable 𝜃 

Example: radioactive matter half-time

𝑁 𝑡 = 𝑁0𝑒
−𝜆𝑡

Example: From radiation pattern to 
probe electron beam inner structure

(Likelihood-free)

minimizemaximize
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Conclusion

1. How AD enables/speeds up ML frameworks

• By minimizing loss function with info of parameter gradient.

• AD is a core part of DP

2. How AD is related to differentiable programming

3. How both can be used for “simulation-based inference” 

𝑦 = 𝑓(𝑥; 𝜃)

• How to minimize loss function? Genetic algorithm, differential evolution, & Gradient descent 

• Fit 𝜃 = 𝑓−1(𝑥; 𝑦) with Neural Network, which is a black box. AD is extensively used in training 
the neural network. 
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