

Topics on Auto Differentiation

- 1. How it enables/speeds up ML frameworks
- 2. How it is related to differentiable programming
- 3. How both can be used for "simulation-based inference"

Machine Learning Seminar

Ze Ouyang

12th Nov, 2024

Overview of differentiation

Numerical differentiation:
$$f'(x) \approx \frac{f(x + \delta x) - f(x)}{\delta x}$$

Pros: simple Cons: round-off & truncation errors, accuracy, inefficient for high-dimension

• Symbolic differentiation: Analytically derive f'(x), like Mathematica

Pros: exact Cons: computationally expensive, expression explosion

• Auto differentiation: Symbolic + Chain rule

Pros: exact Cons: computation graph adding overhead

Preliminary Concepts on Auto Differentiation

Input:
$$x_1, x_2, ..., x_n$$

Output: $y_1, y_2, ..., y_m$ $\mathbb{R}^n \Rightarrow \mathbb{R}^m$ $J_f = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$

AD: Forward Mode

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 + \sin(x_2)$$

Computation graph

- 1. Divide into simple structures
- Create computation graph (contains primal & derivatives respect to its last nodes)
- 3. Follow the direction and calculate gradient

of a certain **input** variable

$$v_4, \frac{\partial v_4}{\partial v_2}, \frac{\partial v_4}{\partial v_1}$$
, should have $\frac{\partial v_4}{\partial v_{-1}}$
 $\frac{\partial v_4}{\partial v_{-1}} = \frac{\partial v_4}{\partial v_1} \frac{\partial v_1}{\partial v_{-1}}$ Chain rule

Forward Primal Trace	Forward Tangent (Derivative) Trace	
$v_{-1} = x_1 = 2$	$\dot{v}_{-1} = \dot{x}_1 = 1$	
$v_0 = x_2 = 5$	$\dot{v}_0 = \dot{x}_2 = 0$	
$v_1 = \ln v_{-1} = \ln 2$	$\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2$	
$v_2 = v_{-1} \times v_0 = 2 \times 5$	$\dot{v}_2 = \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1} = 1 \times 5 + 0 \times 2$	
$v_3 = \sin v_0 = \sin 5$	$\dot{v}_3 = \dot{v}_0 \times \cos v_0 \qquad \qquad = 0 \times \cos 5$	
$v_4 = v_1 + v_2 = 0.693 + 10$	$\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5$	
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$	
$\checkmark y = v_5 \qquad \qquad = 11.652$	\checkmark \dot{y} = \dot{v}_5 = 5.5	

AD: Backward Mode

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 + \sin(x_2)$$

Forward Primal Trace	Reverse Adjoint (Derivative) Trace	
$v_{-1} = x_1 \qquad = 2$.5
$v_0 = x_2 = 5$	$\bar{x}_2 = \bar{v}_0 = 1$.716
$v_1 = \ln v_{-1} = \ln 2$	$\bar{v}_{-1} = \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}} = \bar{v}_{-1} + \bar{v}_1 / v_{-1} = 5.$	5
$v_2 = v_{-1} \times v_0 = 2 \times 5$	$\bar{v}_0 = \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0} = \bar{v}_0 + \bar{v}_2 \times v_{-1} = 1.$	716
	$\bar{v}_{-1} = \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}} \qquad = \bar{v}_2 \times v_0 \qquad = 5$	
$v_3 = \sin v_0 \qquad = \sin 5$	$\bar{v}_0 = \bar{v}_3 \frac{\partial v_3}{\partial v_0} \qquad = \bar{v}_3 \times \cos v_0 = -$	0.284
$v_4 = v_1 + v_2 = 0.693 + 10$	$\bar{v}_2 = \bar{v}_4 \frac{\partial v_4}{\partial v_2} \qquad = \bar{v}_4 \times 1 \qquad = 1$	
	$\bar{v}_1 = \bar{v}_4 \frac{\partial \bar{v}_4}{\partial v_1} = \bar{v}_4 \times 1 = 1$	
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\bar{v}_3 = \bar{v}_5 \frac{\partial v_5}{\partial v_3} \qquad = \bar{v}_5 \times (-1) = -$	1
	$\bar{v}_4 = \bar{v}_5 \frac{\partial v_5}{\partial v_4} = \bar{v}_5 \times 1 = 1$	
	$\bar{v}_5 = \bar{y} = 1$	

- 1. Divide into simple structures
- Create computation graph (contains primal & derivatives respect to its last nodes)
- 3. Calculate from backward of a certain **output** $v_5, \frac{\partial v_5}{\partial v_4}, \frac{\partial v_5}{\partial v_3}$, should have $\frac{\partial v_5}{\partial v_1}$ $\frac{\partial v_5}{\partial v_1} = \frac{\partial v_5}{\partial v_4} \frac{\partial v_4}{\partial v_1}$ Then go back to last v_{-1} node

Chain rule

Suitable for machine learning!

Differentiable Programming (DP)

 $y = f(x;\theta)$

Make sure $f(x; \theta)$ is differentiable.

round(), floor(), ceil(), max(), min()... are not differentiable for loop, if else,...are differentiable

DP enables complex programs to be differentiable by designing, utilizing AD to make gradient-based optimization.

- Auto differentiation
- Continuous optimization
- Dynamic computation graph

Simulation-based Inference

• Statistical Inference

Given parameters θ , the observed data x is not deterministic, but we know probability

Likelihood function

Example: radioactive matter half-time

 $N(t) = N_0 e^{-\lambda t}$

• Simulation-based Inference (Likelihood-free)

Given parameters θ , the observed data x is deterministic, but hard to analytically relate

Likelihood function is implicit

Loss function

minimize

Find suitable θ

Example: From radiation pattern to probe electron beam inner structure

Conclusion

1. How AD enables/speeds up ML frameworks

• By minimizing loss function with info of parameter gradient.

2. How AD is related to differentiable programming

• AD is a core part of DP

3. How both can be used for "simulation-based inference"

 $y = f(x; \theta)$

- How to minimize loss function? Genetic algorithm, differential evolution, & Gradient descent
- Fit $\theta = f^{-1}(x; y)$ with Neural Network, which is a black box. AD is extensively used in training the neural network.