
1

1. How it enables/speeds up ML frameworks

2. How it is related to differentiable programming

3. How both can be used for “simulation-based inference”

Topics on Auto Differentiation

Machine Learning Seminar

Ze Ouyang

12th Nov, 2024

2

• Numerical differentiation: 𝑓′ 𝑥 ≈
𝑓 𝑥 + 𝛿𝑥 − 𝑓(𝑥)

𝛿𝑥

• Symbolic differentiation:

• Auto differentiation:

Pros: simple
Cons: round-off & truncation errors, accuracy, inefficient for high-dimension

Pros: exact
Cons: computationally expensive, expression
explosion

Pros: exact
Cons: computation graph adding overhead

Overview of differentiation

Analytically derive 𝑓′ 𝑥 , like Mathematica

Symbolic + Chain rule

3

Auto Differentiation

Forward Mode: works better for 𝑛 < 𝑚

Backward Mode : works better for 𝑛 > 𝑚

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

ℝ𝑛 ⇒ ℝ𝑚

Input: 𝑥1, 𝑥2,…, 𝑥𝑛
Output: 𝑦1, 𝑦2,…, 𝑦𝑚

Preliminary Concepts on Auto Differentiation

4

AD: Forward Mode

𝑦 = 𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 + sin(𝑥2)

Computation graph

1. Divide into simple structures

2. Create computation graph (contains primal

& derivatives respect to its last nodes)

3. Follow the direction and calculate gradient

of a certain input variable

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

𝜕𝑣2

𝜕𝑣−1
,
𝜕𝑣2

𝜕𝑣0

𝑣4,
𝜕𝑣4

𝜕𝑣2
,
𝜕𝑣4

𝜕𝑣1
, should have

𝜕𝑣4

𝜕𝑣−1

𝜕𝑣4

𝜕𝑣−1
=

𝜕𝑣4

𝜕𝑣1

𝜕𝑣1

𝜕𝑣−1
Chain rule

5

AD: Backward Mode

𝑦 = 𝑓 𝑥1, 𝑥2 = ln 𝑥1 + 𝑥1𝑥2 + sin(𝑥2) 1. Divide into simple structures

2. Create computation graph (contains primal &

derivatives respect to its last nodes)

3. Calculate from backward of a certain output
𝜕𝑣2

𝜕𝑣−1
,
𝜕𝑣2

𝜕𝑣0

𝐽𝑓 =

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛

Suitable for machine learning!

𝑣5,
𝜕𝑣5

𝜕𝑣4
,
𝜕𝑣5

𝜕𝑣3
, should have

𝜕𝑣5

𝜕𝑣1

𝜕𝑣5

𝜕𝑣1
=

𝜕𝑣5

𝜕𝑣4

𝜕𝑣4

𝜕𝑣1
Then go back to last 𝑣−1 node

Chain rule

6

Differentiable Programming (DP)

𝑦 = 𝑓(𝑥; 𝜃)

Make sure 𝑓(𝑥; 𝜃) is differentiable.

round(), floor(), ceil(), max(), min()… are not differentiable

for loop, if else,…are differentiable

DP enables complex programs to be differentiable by designing,

utilizing AD to make gradient-based optimization.

• Auto differentiation
• Continuous optimization
• Dynamic computation graph

7

Simulation-based Inference

• Statistical Inference • Simulation-based Inference

Given parameters 𝜃, the observed data
𝑥 is not deterministic, but we know
probability

Given parameters 𝜃, the observed data 𝑥 is
deterministic, but hard to analytically relate

Likelihood function

Statistical analysis, find 𝜃 with
confidence level

Likelihood function is implicit

Loss function

Find suitable 𝜃

Example: radioactive matter half-time

𝑁 𝑡 = 𝑁0𝑒
−𝜆𝑡

Example: From radiation pattern to
probe electron beam inner structure

(Likelihood-free)

minimizemaximize

8

Conclusion

1. How AD enables/speeds up ML frameworks

• By minimizing loss function with info of parameter gradient.

• AD is a core part of DP

2. How AD is related to differentiable programming

3. How both can be used for “simulation-based inference”

𝑦 = 𝑓(𝑥; 𝜃)

• How to minimize loss function? Genetic algorithm, differential evolution, & Gradient descent

• Fit 𝜃 = 𝑓−1(𝑥; 𝑦) with Neural Network, which is a black box. AD is extensively used in training
the neural network.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

