

A numerical study: Revealing the 3D structure of microbunched laser-wakefield-accelerated electrons by Coherent Transition Radiation

Ze Ouyang

Jun. 20th, 2024

Review of theory of transition radiation

(J	(Journal Club)					
	Reconstructing 3D structure of microbunched electrons from plasma wakefield based on coherent optical transition radiation ¹					
	Ze Ouyang Feb 29 th , 2024					

2

Bunch duration, phase delay effect, phase ambiguity &

spectrum in TR images

4	

Revealing 3D e- bunch info by CTR

A preliminary study on Transition Radiation ¹ & Talk with Prof. Downer
Ze Ouyang Apr 29 th , 2024

Introduction

Knowing the 3D structures of microbunched e- beam is crucial for:

- 1. Understanding the physics of LWFA & PWFA
- 2. Optimizing the e- beam quality (emittance, energy spread, size)
- 3. Generating coherent radiation (Synchrotron radiation, secondary radiations & X-FEL)

Introduction¹

Ways to measure the transverse profile:

- 1. Radiation-based imaging (TR, SPR, Betatron R)
- 2. Scintillating screens (phosphor screens)
- 3. Focus-scans
- 4. Pepper-pot mask
- 5. .

Ways to measure the longitudinal profile:

- 1. Streak cameras
- 2. Electro-Optic sampling
- 3. RF deflecting cavities

4. Radiation spectrum

Microbunched e- beam have much smaller duration.

1 Downer et al. RMP, 90, 035002 (2018)

4

40

-80

-40

0

time (fs)

-80

Generation of Transition Radiation: single e-

With $k(\text{or }\lambda)$, M, γ , and θ_m given, we can calculate the theoretical distribution of FPSF (x_d, y_d) and PSF (x_d, y_d) on the image plane. (or N.A.); $f(\theta_m, \gamma, \zeta) \approx \zeta^{-1} (\gamma^{-1} \zeta K_1(\gamma^{-1} \zeta) - J_0(\zeta \theta_m))$ if $\theta_m \gg \frac{1}{\gamma}$.² The Poynting vector is

$$S(x_d, y_d, \omega) = \frac{c}{4\pi^2} \left(|\mathbf{E}_{\mathbf{x}}(x_d, y_d)|^2 + |\mathbf{E}_{\mathbf{y}}(x_d, y_d)|^2 \right) = \frac{d^3 I_1}{d\omega dx_d dy_d}$$

which is also known as Point Spread Function, $PSF(x_d, y_d)$.

1 Castellano et al. *PRST-AB*, **1**, 062801 (1998) 2 Xiang et al. *Nucl. Instrum. Meth. A* **570**, 3 (2007)

Generation of Transition Radiation: single e-

Generation of Transition Radiation: e- bunch $\rho(x_s, y_s, z_s)$

The *E* field given by the n_{th} slice is

of e- in the slice

$$E(x_d, y_d) = E_x^{(n)}(x_d, y_d) + E_x^{(n)}(x_d, y_d)$$

$$= \Delta z_n \iint dx_s dy_s \rho(x_s, y_s, z_n) \cdot \left(\text{FPSF}_x(x_d - x_s, y_d - y_s) + \text{FPSF}_y(x_d - x_s, y_d - y_s) \right)$$

 \Rightarrow To obtain E_{tot}

Remark 1:

 $\rho(x_s, y_s, z_s)$ gives the number density of electrons in the beam, so $N = \iiint \rho(x_s, y_s, z_s) dx_s dy_s dz_s$

gives the total number of electron.

Remark 2:

foil plane

X Level y

FPSF_x on the image plane will be adjusted to FPSF_x($x_d - x_s, y_d - y_s$)

Generation of Transition Radiation: e- bunch $\rho(x_s, y_s, z_s)$

For each slice, there is a phase delay exp(-*ik*∆*z_n*), relative to the leading portion of the bunch. Therefore, the total *E* field is given by

$$E_{tot}(x_d, y_d) = \iiint \frac{dx_s dy_s dz_s \cdot \rho(x_s, y_s, z_s)}{\text{Number of electrons}} \cdot \frac{\cos(k(z_s - z_u))}{\text{Phase delay}} \cdot \frac{(\text{FPSF}_x(x_d - x_s, y_d - y_s) + \text{FPSF}_y(x_d - x_s, y_d - y_s))}{\text{Field translation}}$$

• It is the |S| rather than E field that the detector records, therefore, the total energy spectral is given by

$$S_{\text{tot}}(x_d, y_d) = \frac{c}{4\pi^2} |\boldsymbol{E}_{\text{tot}}(x_d, y_d)|^2$$

• After simplification, this leads to

$$S_{\text{tot}}(x_d, y_d) = \frac{c}{4\pi^2} \left(\left| \iiint dx_s dy_s dz_s \cdot \rho(x_s, y_s, z_s) \cdot \cos(k(z_s - z_u)) \operatorname{FPSF}_x(x_d - x_s, y_d - y_s) \right|^2 + \left| \iiint dx_s dy_s dz_s \cdot \rho(x_s, y_s, z_s) \cdot \cos(k(z_s - z_u)) \operatorname{FPSF}_y(x_d - x_s, y_d - y_s) \right|^2 \right)$$

Simulation of Transition Radiation: different e- bunch duration

1 Lundh et al. Nat. Phys, 7, 3 (2011)

2 LaBerge et al. https://www.researchsquare.com/article/rs-3894996/v1

Simulation of Transition Radiation: phase delay

1. An important factor to determine the TR intensity when $\lambda_{rad} < \sigma_z$, or say in incoherent situation

Comments:

2. Given the fact that e- bunch duration can go down to ~100nm (from LWFA or FEL), it is also important in coherent situation with λ_{rad} in the optical range

Latest Results in this field^{1,2}

Simulation of Transition Radiation: initial phase position

e- bunch transverse profile

Simulation of Transition Radiation: phase ambiguity

Simulation of Transition Radiation: intensity spectrum

Simulation of Transition Radiation: intensity spectrum¹

 $\frac{L}{\lambda_1} - \frac{L}{\lambda_2} = 1$ $\Rightarrow L = \frac{\lambda^2}{\Delta \lambda}$

"electron bunch train"

Reconstruction of the e- beam: "Measured COTR"

Set $M=10$, $\theta_m=0.28$, $\gamma=391(200 \text{MeV})$;											
Set e- bu	inch: $\rho(x_s)$	$(y_s, z_s) = \sum$	$\int_{i=1}^{4} N_{e_i} \frac{1}{\sqrt{2\pi}\sigma}$	$\frac{1}{x_i} \exp\left(-\frac{(x_i)}{x_i}\right)$	$\left(\frac{-\mu_{x_i}}{2\sigma_{x_i}^2}\right)^2 \frac{1}{\sqrt{2\pi\sigma}}$	$\frac{1}{y_i} \exp\left(-\frac{1}{y_i}\right)$	$\frac{\left(y_{i}-\mu_{y_{i}}\right)^{2}}{2\sigma_{y_{i}}^{2}}\right)$	$\frac{1}{\sqrt{2\pi}\sigma_{z_i}}\exp\left($	$\int_{-\infty}^{\infty} \frac{\left(z_i - \mu_{z_i}\right)^2}{2\sigma_{z_i}^2}$		
Params	ρ_1	$ ho_2$	$ ho_3$	$ ho_4$							
N _e	1e9	0.7e9	0.5e9	1.5e9	<u> </u>	e- b	unch longit	udinal profi	le		
μ_x	3µm	-7µm	-12µm	9µm	1.0 - 1.0 - 9.8 -		\int	\backslash			ρ
σ_{χ}	34µm	15µm	18µm	9µm	e distribu			\sim			
μ_y	6µm	-3µm	4µm	-4µm	even characteristic for the second c			\backslash			
σ_y	11µm	25µm	34µm	23µm		1.0	0.5 0.0				
μ_z	0.12µm	0.63µm	0.78µm	0.29µm	-1.5	-1.0	-0.5 0.0	υ.5 1. z (μm)	0 1.5	2.0 2.5	
σ_{z}	0.15µm	0.25µm	0.35µm	0.4µm							_
100	μm-		- 0.4 - 0.2		300nm	400nm	500nm	600nm	700nm	800nm	1e=21 - 1.6 - 0.7 - 0.7 - 0.7
e- bunch transverse profile									± /		

1. Forget e- bunch info in last page

2. Set *M*=10, θ_m =0.28, γ =391(200MeV)

3. Presume e- bunch:
$$\rho(x_s, y_s, z_s) = \sum_{i=1}^6 N_{e_i} \frac{1}{\sqrt{2\pi}\sigma_{x_i}} \exp\left(-\frac{\left(x_i - \mu_{x_i}\right)^2}{2\sigma_{x_i}^2}\right) \frac{1}{\sqrt{2\pi}\sigma_{y_i}} \exp\left(-\frac{\left(y_i - \mu_{y_i}\right)^2}{2\sigma_{y_i}^2}\right) \frac{1}{\sqrt{2\pi}\sigma_{z_i}} \exp\left(-\frac{\left(z_i - \mu_{z_i}\right)^2}{2\sigma_{z_i}^2}\right)$$

- 4. Randomly set these 42 parameters, then generate $COTR_{\rm fitted}$ at λ =600nm, 700nm, and 800nm
- 5. To minimize the cost function or objective function¹:

$$\Phi(x,y) = \frac{1}{2} \|COTR_{\text{measured}}(x,y) - COTR_{\text{fitted}}(x,y)\|^2 \cdot W(x,y)$$

The minimization will stop when

- 1) A minimum has been found within the user-defined precision (10⁻⁸), OR
- 2) A user-defined maximum number of iteration has been reached (50)

https://www.gnu.org	g/software/gsl/	/doc/html/nls.	html#overview
---------------------	-----------------	----------------	---------------

Params	$ ho_i$
N _e	(0.5e9 <i>,</i> 1e9)
μ_x	(-20µm, 20µm)
σ_{χ}	(1µm, 30µm)
μ_y	(-20μm, 20μm)
σ_y	(1µm, 30µm)
μ_z	(0, 400µm)
σ_{z}	(0.1µm, 0.3µm)

Reconstruction of the e- beam: Synthetic COTR images

Reconstruction of the e- beam: Synthetic COTR images

What if the longitudinal or transverse profile is known?