

Proposal for the search for exotic spin-spin interaction at the micrometer range using a micro-cantilever

> Candidate: Ze OUYANG Supervisor: Prof. Pengshun LUO May, 25th, 2022

Content

Introduction: beyond SM

Standard model Unanswered questions¹

dark matter, dark energy,

strong CP problem , hierarchy problem

asymmetry of matter-antimatter…

Beyond the standard model: new interactions, new particles?

Introduction: strong CP and axion

 $\mathcal{L}_{\text{QCD}} = \mathcal{L}_0 + \theta_{\text{QCD}}$ g^2 $\frac{g}{32\pi^2}G_{\mu\nu}^a\tilde{G}^{a\mu\nu}$ gauge transform $T: T|\omega\rangle = e^{i\theta_{\rm QCD}}|\omega\rangle$ Theory: $0 \leq \theta_{\text{QCD}} \leq 2\pi$ \longrightarrow charge-parity odd **Experiment:** $\theta_{\text{QCD}} \sim 10^{-10}$ — no indication of the CP odd¹

Solution: Axion $\psi_{\rm PQ} = |\psi_{\rm PQ}| e^{i\theta_{\rm QCD}} \simeq f_a e$ $i\frac{a}{f}$ $U(1)_{\text{PQ}}$ symmetry²: $\psi_{\text{PQ}} = |\psi_{\text{PQ}}| e^{i\theta_{\text{QCD}}} \simeq f_a e^{i\theta_{\text{QCD}}}$ Solved strong CP problem by absorbing θ_{OCD} into axion field term, thus there is no charge-parity odd **12** axion field

¹2015 Pendlebury et al. *Phys. Rev. D* ²1977 Peccei et al. Phys. Rev. D

Introduction: axion

Axion: hypothetical spin-0 boson

- 1. Solution to Strong CP problem
- 2. Dark matter candidate
- **3. Mediating new interactions**

Axion mediated exotic spin-spin interaction¹

$$
V_{axion} = -\frac{g_p^2}{4\pi\hbar c} \frac{\hbar^3}{4m_f^2 c} \left[\hat{\sigma}_1 \cdot \hat{\sigma}_2 \left(\frac{1}{\lambda r^2} + \frac{3}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{\lambda^3} \right) \right] e^{-r/\lambda}
$$

Long range interaction between fermions, $\lambda = \frac{\hbar}{m_a c}$

Proposed experimental steps:

Convert the V_{axion} into macroscopic force between spin-polarized objects

Measure the exotic spin-spin force via a **micro-cantilever**

Either find the new interaction

Or set the constraint on the coupling constant based on a Null result

Experimental scheme: SPM

Experimental scheme: detection noise

Force noise spectral density (N/VHz) displacement measurement noise 10^{-14} thermal noise total noise Signal frequency 6K 10^{-15} $10⁰$ $10¹$ $10²$ $10³$ $f(Hz)$

Cantilever parameters

detection noise \sim 8.9×10⁻¹⁷ N, integral time ~1000s

Closed loop magnetic structure (CLMS):

- 1. Supply spin-polarized electrons
- 2. Suppress magnetic force by forming a circular \vec{B} field

Measure the force along the z axis

Experimental scheme: expected signal

$$
V_{axion} = -\frac{g_p^2}{4\pi\hbar c} \frac{\hbar^3}{4m_f^2 c} \left[\hat{\sigma}_1 \cdot \hat{\sigma}_2 \left(\frac{1}{\lambda r^2} + \frac{3}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{\lambda^3} \right) \right] e^{-r/\lambda}
$$

$$
F_Z = \frac{g_p^e g_p^e}{4\pi\hbar c} \cdot n_1 n_2 \frac{\hbar^3}{4m_e^2 c} \int dV_1 \int dV_2 \frac{\partial}{\partial Z} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{\lambda r^2} + \frac{1}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{1}{\lambda r^2} + \frac{3}{r^3} \right) \right] e^{-r/\lambda}
$$

Experimental scheme: expected signal

Error analysis: magnetic force

Error analysis: superconducting films

ИИ

The superconducting thin films are used to suppress magnetic force by the perfect diamagnetism of superconducting state materials.

external B field can be decreased to $\sim1\mu$ T

Error analysis: other forces

Conclusion

- 1. We proposed a method to search for axion mediated spin-dependent interaction, based on specially designed probe and spin-polarized electron source.
- 2. Our result showed the potential of such method, improving the constraints at the micrometer range by about 1 order of magnitude.
- 3. Spurious noise was analyzed and suppressed.
- 4. Our work is in preparation to be submitted.

Proposal for the search for exotic spin-spin interactions at the micrometer scale using functionalized cantilever force sensors

Qian Wang,¹ Ze Ouyang,² Yu Lu,¹ Jianbo Wang,³ Lin Zhu,¹ and Pengshun Luo¹,*

¹MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, China ²School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China ³Huazhong Institute of Electron-Optics, Wuhan National Research Center for Optoelectronics, Wuhan 430223, China

Defense

Thank ENP group at CGE, HUST¹.

教师

博士研究生

硕士研究生

本科生

1http://ggg.hust.edu.cn/yljcwl/xwlxyjy/xzcheng_yuan.htm