

Proposal for the search for exotic spin-spin interaction at the micrometer range using a micro-cantilever

> Candidate: Ze OUYANG Supervisor: Prof. Pengshun LUO May, 25th, 2022

Content

Introduction: beyond SM

Standard model

Unanswered questions¹

dark matter, dark energy,

strong CP problem , hierarchy problem

asymmetry of matter-antimatter...

Beyond the standard model: new interactions, new particles?

Introduction: strong CP and axion

Strong CP problem:

 $\mathcal{L}_{QCD} = \mathcal{L}_{0} + \theta_{QCD} \frac{g^{2}}{32\pi^{2}} G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} \quad \text{gauge transform} \quad T: T |\omega\rangle = e^{i\theta_{QCD}} |\omega\rangle$ **Theory:** $0 \le \theta_{QCD} \le 2\pi \longrightarrow$ charge-parity odd **Experiment:** $\theta_{QCD} \sim 10^{-10} \longrightarrow$ no indication of the CP odd¹

Solution: Axion $U(1)_{PQ}$ symmetry²: $\psi_{PQ} = |\psi_{PQ}| e^{i\theta_{QCD}} \simeq f_a e^{i\frac{a}{f_a}}$ axion field Solved strong CP problem by absorbing θ_{QCD} into axion field term, thus there is no charge-parity odd

Introduction: axion

Axion: hypothetical spin-0 boson

- 1. Solution to Strong CP problem
- 2. Dark matter candidate
- 3. Mediating new interactions

Axion mediated exotic spin-spin interaction¹

$$V_{axion} = -\frac{g_p^2}{4\pi\hbar c} \frac{\hbar^3}{4m_f^2 c} \left[\hat{\sigma}_1 \cdot \hat{\sigma}_2 \left(\frac{1}{\lambda r^2} + \frac{3}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{\lambda^3} \right) \right] e^{-r/\lambda}$$

Long range interaction between fermions, $\lambda = \frac{\hbar}{m_a c}$

Proposed experimental steps:

Convert the *V_{axion}* into macroscopic force between spin-polarized objects

Measure the exotic spin-spin force via a micro-cantilever

Either find the new interaction

Or set the constraint on the coupling constant based on a Null result

Experimental scheme: SPM

Experimental scheme: detection noise

Force noise spectral density (N/ $\sqrt{\mathrm{Hz}}$) displacement measurement noise **10**⁻¹⁴ thermal noise total noise Signal frequency 6 K 10⁻¹⁵ **10**⁰ **10**¹ 10² 10^{3} f (Hz)

elastic coefficient	0.02 N/m
length	450 μm
width	48 µm
thickness	1.0 μm
resonance frequency	6.5 kHz
quality factor	10000

Cantilever parameters

detection noise $\sim 8.9 \times 10^{-17}$ N, integral time $\sim 1000s$

Closed loop magnetic structure (CLMS):

- 1. Supply spin-polarized electrons
- 2. Suppress magnetic force by forming a circular \vec{B} field

Measure the force along the z axis

Experimental scheme: expected signal

$$V_{axion} = -\frac{g_p^2}{4\pi\hbar c} \frac{\hbar^3}{4m_f^2 c} \left[\hat{\sigma}_1 \cdot \hat{\sigma}_2 \left(\frac{1}{\lambda r^2} + \frac{3}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r})(\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{\lambda^3} \right) \right] e^{-r/\lambda}$$

$$F_Z = \frac{g_p^e g_p^e}{4\pi\hbar c} \cdot n_1 n_2 \frac{\hbar^3}{4m_e^2 c} \int dV_1 \int dV_2 \frac{\partial}{\partial Z} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_2) \left(\frac{1}{\lambda r^2} + \frac{1}{r^3} \right) - (\hat{\sigma}_1 \cdot \hat{r})(\hat{\sigma}_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{1}{\lambda r^2} + \frac{3}{r^3} \right) \right] e^{-r/\lambda}$$

Experimental scheme: expected signal

Error analysis: magnetic force

Error analysis: superconducting films

Humber of Science and A

The superconducting thin films are used to suppress magnetic force by the perfect diamagnetism of superconducting state materials.

13

Error analysis: other forces

Terms		Amplitude	$\Delta F_{z}(\mathbf{N})$
Casimir force	Height	3 nm	5.0×10^{-17}
electrostatic force	Height	3 nm	1.7×10^{-17}
	Charge	2 mV	3.0×10^{-17}

Conclusion

- 1. We proposed a method to search for axion mediated spin-dependent interaction, based on specially designed probe and spin-polarized electron source.
- 2. Our result showed the potential of such method, improving the constraints at the micrometer range by about 1 order of magnitude.
- 3. Spurious noise was analyzed and suppressed.
- 4. Our work is in preparation to be submitted.

Proposal for the search for exotic spin-spin interactions at the micrometer scale using functionalized cantilever force sensors

Qian Wang,¹ Ze Ouyang,² Yu Lu,¹ Jianbo Wang,³ Lin Zhu,¹ and Pengshun Luo^[],*

¹MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, Huazhong University of Science and Technology, Wuhan 430074, China ²School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China ³Huazhong Institute of Electron-Optics, Wuhan National Research Center for Optoelectronics, Wuhan 430223, China

Defense

Thank ENP group at CGE, HUST¹.

教师

博士研究生

硕士研究生

本科生

¹http://ggg.hust.edu.cn/yljcwl/xwlxyjy/xzcheng_yuan.htm