

(Journal Club)

Reconstructing 3D structure of microbunched electrons from plasma wakefield based on coherent optical transition radiation¹

Ze Ouyang Feb 29th, 2024

1 https://www.researchsquare.com/article/rs-3894996/v1

Introduction & Concepts

Experiments: injection, and COTR generation & imaging

Introduction

Overview of the state-of-the art LWFA electron beam parameters. * Bunch-integrated measurements.				rfaccelerator
Bunch property	State of the Art	Other beam parameters	References	
Bunch energy	8 GeV	5 pC, 0.2 mrad	Gonsalves et al.,	
		(up to 60 pC in 6 GeV peak)	PRL (2019) [28]	Narrow energy spread, emittance.
Bunch charge	220 pC	250 MeV, 7 mrad	Couperus et al.,	8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	$(dE/E = 14\% \text{ FWHM}^*)$	[ionization injection]	Nat. Comm. (2017) [29]	
	1.1 nC	334 MeV, 2.5 mrad	Götzfried et al.,	beam stability and control, and
	$(dE/E = 18\% \text{ FWHM}^*)$	[shock injection]	PRX (2020) [30]	
	700 nC	Up to 200 MeV	Shaw, et al.	brightness preservation
	$(dE/E = 100\%^*)$	laser: OMEGA-EP, 100 J, 700 fs	Sci Rep 11 (2021) [31]	
Energy spread*	0.2–0.4% (RMS)	800 MeV, 8.5–24 pC	Ke, et al.	
		shockwave assisted injection	PRL (2021) [32]	
Bunch duration	1.4 fs (RMS)	15 pC, CTR	Lundh et al.,	
		(diagnostic limited)	Nat Phys (2011) [33]	
	$2.5 f_{\rm e}$ (DMS)	Faraday rotation	Buck et al.,	LWF Accelerator:
	2.3 IS (KNIS)	(diagnostic limited)	Nat Phys (2011) [34]	
Emittance*	0.2π mm mrad	Single shot measurement	Weingartner et al.	Bunch duration transverse emittance
(normalized)	(@245 MeV)	Single-shot measurement	PRSTAB (2012) [35]	
Repetition Rate	1 Hz	24-hour operation;	Maier et al.,	
		100,000 consecutive shots	PRX (2020) [36]	charge, and energy spread
	11217	up to 15 MoV 2.5 pC	Salehi et al.,	
		up to 15 MeV, 2.5 pC	PRX (2021) [37]	
Efficiency (laser-to-electron)	9.6%	quasi-monoenergetic	Götzfried et al.,	
		3J in driver laser pulse	PRX (2020) [30]	
	110/-	dE/E = 100%	Shaw, et al.	Diagnostic methods
		135J in driver laser pulse	Sci Rep 11 (2021) [31]	

1 left table courtesy of M Fuchs et al. JINST (2024)

Deducing electron structures comprehensively with COTR imaging and other diagnostics

Concept: Transition Radiation (TR) of a single electron

TR is emitted when a relativistic electron passes from one medium into another with a different index of refractive.

Example: Consider a single energetic electron emerging from a high density ($\omega_p^2 > \omega^2$), semiinfinite plasma normally incident into vacuum, the power distribution is given by:

$$\frac{\mathrm{d}^2 W_e}{\mathrm{d}\omega \mathrm{d}\Omega} = \frac{r_e m_e c}{\pi^2} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}$$

<mark>(ω</mark>-independent)

Concept: Transition Radiation (TR) of a single electron

Unique angular distribution with

normally incident

The TR angular distribution of multiple electrons can be written as¹:

$$\frac{\mathrm{d}^2 W_e}{\mathrm{d}\omega \mathrm{d}\Omega} \bigg|_{\text{multiple}} = [N_i + N_c^2 F(\omega, \theta)] \frac{\mathrm{d}^2 W_e}{\mathrm{d}\omega \mathrm{d}\Omega} \bigg|_{\text{single}} \quad \text{(ω-dependent)}$$
where $F(\omega, \theta) \coloneqq F(\vec{k}) = \left| \int f(r, z) e^{(-i\vec{k}\cdot\vec{x})} \mathrm{d}^3 x \right|^2$ is the Fourier transform of the beam distribution(called form factor), which can either be $F(\vec{k} \coloneqq \vec{k}_\perp + \vec{k}_z)$ or $F(\vec{k}_\perp)F(\vec{k}_z)$ given certain cases. The range of the form factor $F(\vec{k})$ is $0 < \left\| F(\vec{k}) \right\| < 1$.

CTR: Typical size for the electron bunch is about several μ m. The wavelength of the detectable TR should be longer than this typical size, which helps to generate Coherent Transition Radiation ($\lambda_{TR} > 1\mu$ m).

COTR: It is seen later that since the electron bunch itself got modulated to be microbunched (sub- μ m), which greatly decreases its typical size. This further facilitates the generation of CTR in the optical ranges (nm), the so-called Coherent Optical Transition Radiation (COTR)^{1, 2}.

1 AH Lumpkin et al. PRL (2020)

Experimental Setup

Down-ramp injection

By pre-creating a sharp downward density ramp in the plasma, background electrons can be

injected into the plasma wakefield at the ramp¹.

shock generation²

1 TY Chien et al, PRL (2005)

2 KK Swanson, PR Accel Beams (2017)

Results

1. quasi-monoenergetic distribution

2. total charge >100MeV is 54pC (2.3×10⁸ electrons)

- 1. High coherence
- 2. Simple structure
- 3. Near λ -independent

Microbunched electrons $\rho(x, y, z)$ reconstruction procedure for DRI

Inverse problem: For a matrix transformation UA = B. If knowing B, how to get A?

- **In our case: A**: electron bunch distribution ρ
 - **B**: TR intensity profiles I
 - **U**: The mapping is $I = F(\rho)$

Universally, there are two ways to solve the ubiquitous Inverse Problems:

Way 1: Find the inverse mapping U^{-1} ;

Way 2: Set an initial A_o and iterate to new A_i to gradually approach the B.

 $\rho(x, y, z)$ =longitudinal + transverse profile

Microbunched electrons $\rho(x, y, z)$ reconstruction procedure for DRI

¹ Picture partially from M Downer et al. Rev. Mod. Phys (2018)

2 M Castellano et al. PR Accel Beams (1998)

Longitudinal profile reconstruction of Microbunched electrons

The bunch's longitudinal profile
$$(N_e(\xi) \text{ or } \frac{\mathrm{d}N_e}{\mathrm{d}z} \text{ or } \frac{\mathrm{d}N_e}{\mathrm{d}\xi})$$
 maps

onto the bunch's energy spectrum $\frac{\partial N_e}{\partial U_e}$, if three assumptions

are met:

- Precise injection locations (confirmed by experimental data)
- 2. Slowly-varying wake after injection (confirmed by experimental data)
- 3. Chirp $\frac{\partial U_e}{\partial \xi}$ is linear or say \vec{E}_z is linear with ξ (confirmed by simulation)

Longitudinal profile reconstruction of Microbunched electrons

Given
$$E_z = \frac{en_e}{2\epsilon_0}\xi$$
, then the potential is $\Phi = \frac{en_e}{4\epsilon_0}\xi^2$, and the energy gain is $U_e = e(\Phi_i - \Phi_f)$.
The longitudinal profile is $\frac{dN_e}{d\xi} = \frac{\partial N_e}{\partial U_e}\frac{\partial U_e}{\partial \xi} = \frac{\partial N_e}{\partial U_e}\frac{n_e e^2}{2\epsilon_0}(\xi_i - \xi_f) = \frac{n_e e^2}{2\epsilon_0}\frac{\partial N_e}{\partial U_e}L_{acc}$

Transverse profile reconstruction of Microbunched electrons

Randomly set the initial $\rho_0(x, y, z) \Rightarrow$ Generate COTR

A cost function NSS(Normalized Sum-of-Squares) is used to guide the new $\rho_i(x, y, z)$, based on the estimated longitudinal profile, measured total

charge, and matching degree to the measured multi-spectral COTR.

Replace $\rho_0(x, y, z)$ to $\rho_i(x, y, z) \Rightarrow$ Generate COTR \Rightarrow Guided by the cost function again

Profile analysis (bunch shape)

- 1. Transverse coherence is low
- 2. Longitudinal microbunched electrons found
- 3. Several typical converged solution sets exist

Profile analysis (form factor)

Self-truncated ionization injection

- ~300 pc (1.2×10⁹ electrons)
 Instead of the electron spectrometer, the longitudinal profile is from PIC simulation
- 3. Portion contribution

Self injection

1. Lack of pre-known longitudinal profile, not-satisfying simulation result, wide transverse region

2. Time-consuming reconstruction based Gaussian longitudinal profile

3. Various solutions exist

- 1. Demonstrated multispectral COTR imaging as a high-resolution diagnostic of the microbunched electrons.
- 2. The microbunched electrons are required with known longitudinal profile
- 3. Works well in Down-ramp injection and Self-truncated ionization injection, but needs to be improved in terms of the Self-injection.
- 4. A promising method to improve LWFA-driven X-ray sources ¹, because of the contribution of coherent electrons in X-ray also being N_c^2 .

Thanks!