

(Journal Club)

Reconstructing 3D structure of microbunched electrons from plasma wakefield based on coherent optical transition radiation¹

Ze Ouyang Feb 29th, 2024

Introduction & Concepts

Experiments: injection, and COTR generation & imaging

Introduction

1 left table courtesy of M Fuchs et al. JINST (2024)

Deducing electron structures comprehensively with COTR imaging and other diagnostics

Concept: Transition Radiation (TR) of a single electron

TR is emitted when a relativistic electron passes from one medium into another with a different index of refractive.

Example: Consider a single energetic electron emerging from a high density ($\omega_p^2 > \omega^2$), semiinfinite plasma normally incident into vacuum, the power distribution is given by:

$$
\frac{d^2 W_e}{d\omega d\Omega} = \frac{r_e m_e c}{\pi^2} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}
$$

-independent)

Concept: Transition Radiation (TR) of a single electron

Unique angular distribution with

normally incident

The TR angular distribution of multiple electrons can be written as¹:

$$
\frac{d^2 W_e}{d\omega d\Omega}\Big|_{\text{multiple}} = [N_i + N_c^2 F(\omega, \theta)] \frac{d^2 W_e}{d\omega d\Omega} \Big|_{\text{single}}
$$
\nwhere $F(\omega, \theta) := F(\vec{k}) = \left| \int f(r, z) e^{(-i\vec{k} \cdot \vec{x})} d^3x \right|^2$ is the Fourier transform of the beam

distribution(called form factor), which can either be $F(\vec{k}:= \vec{k}_{\perp} + \vec{k}_z)$ or $F(\vec{k}_{\perp})F(\vec{k}_z)$ given certain cases. The range of the form factor $F(\vec{k})$ is $0 < ||F(\vec{k})|| < 1$.

CTR: Typical size for the electron bunch is about several μm. The wavelength of the detectable TR should be longer than this typical size, which helps to generate Coherent Transition Radiation ($\lambda_{\rm TR} > 1 \mu$ m).

COTR: It is seen later that since the electron bunch itself got modulated to be microbunched (sub-μm), which greatly decreases its typical size. This further facilitates the generation of CTR in the optical ranges (nm), the so-called Coherent Optical Transition Radiation (COTR) $^{1/2}$.

1 AH Lumpkin et al. PRL (2020)

Experimental Setup

Down-ramp injection

By pre-creating a sharp downward density ramp in the plasma, background electrons can be

injected into the plasma wakefield at the ramp¹.

1 TY Chien et al, PRL (2005)

2 KK Swanson, PR Accel Beams (2017)

1. quasi-monoenergetic distribution

2. total charge >100MeV is 54pC (2.3×108 electrons)

- 1. High coherence
- 2. Simple structure
- 3. Near λ-independent

Inverse problem: For a matrix transformation $\boldsymbol{U} \boldsymbol{A} = \boldsymbol{B}$. If knowing \boldsymbol{B} , how to get A?

- In our case: \bullet $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ electron bunch distribution ρ
	- \bm{B} : TR intensity profiles I
	- \boldsymbol{U} : The mapping is $I = F(\rho)$

Universally, there are two ways to solve the ubiquitous Inverse Problems:

Way 1: Find the inverse mapping \mathbf{U}^{-1} ;

Way 2: Set an initial A_{ρ} and iterate to new A_i to gradually approach the B.

 $\rho(x, y, z)$ =longitudinal + transverse profile

Microbunched electrons $\rho(x, y, z)$ reconstruction procedure for DRI

¹ Picture partially from M Downer et al. Rev. Mod. Phys (2018)

² M Castellano et al. PR Accel Beams (1998)

Longitudinal profile reconstruction of Microbunched electrons

The bunch's longitudinal profile
$$
(N_e(\xi)
$$
 or $\frac{dN_e}{dz}$ or $\frac{dN_e}{d\xi}$) maps

onto the bunch's energy spectrum ∂N_e ∂U_e , if three assumptions

are met:

- Precise injection locations (confirmed by experimental data)
- 2. Slowly-varying wake after injection (confirmed by experimental data)
- 3. Chirp $\frac{\partial U_e}{\partial \zeta}$ $\frac{\partial \sigma_e}{\partial \xi}$ is linear or say $\acute{E_z}$ is linear with ξ (confirmed by simulation)

Longitudinal profile reconstruction of Microbunched electrons

Given
$$
E_z = \frac{en_e}{2\epsilon_0} \xi
$$
, then the potential is $\Phi = \frac{en_e}{4\epsilon_0} \xi^2$, and the energy gain is $U_e = e(\Phi_i - \Phi_f)$.
The longitudinal profile is $\frac{dN_e}{d\xi} = \frac{\partial N_e}{\partial U_e} \frac{\partial U_e}{\partial \xi} = \frac{\partial N_e}{\partial U_e} \frac{n_e e^2}{2\epsilon_0} (\xi_i - \xi_f) = \frac{n_e e^2}{2\epsilon_0} \frac{\partial N_e}{\partial U_e} L_{acc}$

Transverse profile reconstruction of Microbunched electrons

Randomly set the initial $\rho_0(x, y, z) \Rightarrow$ Generate COTR

A cost function NSS(Normalized Sum-of-Squares) is used to guide the new $\rho_i(x, y, z)$, based on the estimated longitudinal profile, measured total charge, and matching degree to the measured multi-spectral COTR.

Replace $\rho_0(x, y, z)$ to $\rho_i(x, y, z) \Rightarrow$ Generate COTR \Rightarrow Guided by the cost function again

Converge to final $\rho_f(x, y, z)$

Profile analysis (bunch shape)

- 1. Transverse coherence is low
- 2. Longitudinal microbunched electrons found
- 3. Several typical converged solution sets exist

Profile analysis (form factor)

Self-truncated ionization injection

- 1. \approx 300 pc (1.2×10⁹ electrons) 2. Instead of the electron spectrometer, the longitudinal profile is from PIC simulation
- 3. Portion contribution

Self injection

1. Lack of pre-known longitudinal profile, not-satisfying simulation result, wide transverse region

2. Time-consuming reconstruction based Gaussian longitudinal profile

3. Various solutions exist

- 1. Demonstrated multispectral COTR imaging as a high-resolution diagnostic of the microbunched electrons.
- 2. The microbunched electrons are required with known longitudinal profile
- 3. Works well in Down-ramp injection and Self-truncated ionization injection, but needs to be improved in terms of the Self-injection.
- 4. A promising method to improve LWFA-driven X-ray sources $\frac{1}{2}$, because of the contribution of coherent electrons in X-ray also being N_c^2 .

Thanks!