

Simulating the Absorption and Emission Process in Ti:Sapphire

Ze Ouyang July 14th , 2023

- pumping laser: ~5ns, 250mJ, 532nm
- gain material: ~1cm, light beam radius of 0.15cm

absorption cross section: 6.4e-20 cm²

emission cross section: 4e-19 cm²

Intensity
$$I: W/cm^2$$

 $g = \frac{1}{z} \frac{dI}{dz} \longrightarrow g = \frac{1}{z} \frac{dF}{dz} \longrightarrow F(z) = F(0)e^{gz}$
Fluence $F: J/cm^2$

suppose the pumping laser of a δ -function

Absorption process

Fluence with the length of the material

Emission process

Emission process

method: To make it independent with time, cut it into pieces of fluence slices

each pixel goes through the amplified process successively

after amplification

convert to intensity

Emission process

leave out the refraction index of the gain material?

the cross section is given in page 20 in the article